MPC-EX Physics Motivation: Transverse Spin

Xiaodong Jiang (LANL) and John Lajoie (ISU)

SSA's: Quarks can tell left-right in $p \ p^\uparrow \to \pi X$

up-quarks favor left (L_u >0), down-quarks favor right (L_d <0).

Cluster A_N in PHENIX

- STAR/PHENIX have measured large SSA's for neutral pions and eta mesons
- Current measurements cannot address the <u>source</u> of these asymmetries
 - Need more targeted measurements

How could a quark tell left from right?

 Collins: a transversely polarized quark generates left-right asymmetry in the process of fragmentation.

$$A_N^{Collins} \propto \delta q(x) \otimes H_{1q}^{\perp h}(z, P_{h\perp}^2)$$

Transversity: quark's transverse spin.

T-Odd fragmentation function

 Sivers: quark-distribution is left-right asymmetric in a transversely polarized nucleon due to quark's transverse motion.

$$A_N^{Sivers} \propto f_{1T}^{\perp q}(x) \otimes D_{1q}^{\perp h}(z, P_{h\perp}^2)$$

T-Odd quark distribution: Sivers distr.

Regular fragmentation function

The toyMC Monte Carlo

- toyMC is a simple Monte Carlo that models polarized p+p interactions according to SIDIS extractions
 - Based on pythia for parton scattering
 - Spin information implemented following transversity
 - Implements Collins FF (spin-dependent fragmentation)

$$D_{h/q,s}(z,p_{\perp}) = D_{h/q}(z,p_{\perp}) + \frac{1}{2} \Delta^{N} D_{h/q\uparrow}(z,p_{\perp}) \hat{\mathbf{s}} \cdot (\hat{\mathbf{p}}_{\mathbf{q}} \times \hat{\mathbf{p}}_{\perp})$$

Single Particle π^0 A_N in Simulation

Charged Track/Cluster Reconstruction

Charged Track Requirements:

- All layers in x, y hit
- Summed energy < 70 MeV
- All tracks used as seed
- For each seed iterated until stable
- Select the "highest p_T" cluster

(Same reconstruction method can be applied to EM tracks.)

2 or 3 tracks in charged cluster Correlations divided by spin-randomized distributions to account for acceptance.

Collins in Jets Performance Plot

Single-Track π⁰ Charged Cluster (>=3 tracks) Asymmetry - 49pb¹ sampled, P=0.6

A Sign Mismatch of the Sivers function

FIG. 1: The quark-gluon correlation function $gT_{q,F}(x,x)$ as a function of momentum fraction x for u-quarks (left) and d-quarks (right). The dashed (dotted) lines are $gT_{q,F}(x,x)|_{\text{new Sivers}}$ ($gT_{q,F}(x,x)|_{\text{old Sivers}}$) obtained by taking the k_{\perp} -moments of the corresponding quark Sivers functions according to the right-hand-side of Eq. (10). The solid lines represent the correlation functions extracted directly from data on SSAs for inclusive pion production in proton-proton collisions, $p^{\uparrow}p \rightarrow \pi + X$ [14], after correcting for the sign convention (see text).

Collinear twist-3 method in analyzing p+p data yields opposite signs of quark Sivers function moments compared to that from Semi-Inclusive Deep-Inelastic Scattering.

200 GeV p+p Jet A_N

Zhong-Bo Kang et al. arXiv:1103.1591

A very straightforward measurement for the MPC-EX.

Conclusions

- The MPC-EX can address key issues in the study of transverse SSA's in polarized p+p collisions at RHIC:
 - Is the origin of these SSA's in the initial or final state?
 - Deeper insight into nucleon structure
 - How large are factorization breaking effects?
 - How can we compare DIS and p+p results?
 - What is the correct approach in pQCD?
 - Importance of collinear factorization approach, twist-3, and final-state corrections

BACKUP

Quark Sivers Distribution

Forbidden before 2002 quark Sivers distribution

- Naive T-odd, not allowed for collinear quarks. Transverse Mom.
 Dep. parton distributions (TMDs).
- Correlation between nucleon spin and quark's transverse momentum.
- Imaginary piece of interference $L_q=0 \Leftrightarrow L_q=1$ quark wave functions.

Gauge invariance of QCD requires Sivers function to flip sign

between semi-inclusive DIS and Drell-Yan.

$$\left. f_{1T}^{\perp q} \right|_{SIDIS} = - f_{1T}^{\perp q} \Big|_{D-Y}$$

$$\left. \begin{array}{c} \gamma^* \\ \gamma^* \\ p^{\uparrow} + p \rightarrow [\gamma^* \rightarrow \ell^+ \ell^-] + X \end{array} \right.$$

$$\left. \begin{array}{c} \ell + p^{\uparrow} \rightarrow \ell + \pi + X \\ \text{DY: repulsive} \end{array} \right.$$
SIDIS: attractive

Final-State-Interaction₁₅

Large SSA observed in forward direction: STAR π^0

π^0 Reconstruction

Selection of π^{0} 's in jet events.

Single-track π^{0} 's E>20GeV

Double-track π^{0} 's E>20GeV (each cluster)

Less π^{0} 's, less background...

More π^{0} 's, more background...

Asymmetry Sensitivity

 To see a very small asymmetry, likely you would not bin in φ but use "sqrt method"

$$A_{N}^{raw} = \frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}} - \sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}} + \sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}$$

- Kind of like making two bins in ϕ (left/right)

Can see a
Collins
asymmetry
as small as
27% of the
single-
particle A_N .

	toyMC asymmetry	3-sigma statistical error
>=3 tracks, single track π^0	0.019*0.6 = 0.011	0.014
>=3 tracks, single track π^0	0.068*0.6 = 0.048	0.011

Other Spin topics: A_{LL} of Inclusive Jet

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \propto \frac{\Delta f_a \Delta f_b}{f_a f_b} \hat{a}_{LL}$$

 Δf : polarized parton distribution functions

 $\Delta u(x_1)$ is well-known. A_{LL} of forward jet can provide access to $\Delta G(x_2)$.

STAR Preliminary Results:

200 GeV p+p Single Spin Asymmetry of Jet and Direct Photon

Zhong-Bo Kang et al.

MPC-EX can provide a clear answer to help resolving the puzzle on quark Sivers distribution.

Large SSA also observed in PHENIX: MPC Single Clusters

However, two mechanisms can not be distinguished in A_N of inclusive hadron production in p+p:

Collins effect: quark transverse spin (transversity) generates a left-right bias through fragmentation.

Sivers effect: quark transverse motion generates a left-right bias.

500 GeV p+p

SSA grows with p_t : STAR π^0

